资源类型

期刊论文 959

会议视频 67

会议信息 3

会议专题 1

年份

2024 1

2023 88

2022 135

2021 108

2020 82

2019 64

2018 75

2017 45

2016 38

2015 64

2014 40

2013 37

2012 32

2011 42

2010 36

2009 29

2008 19

2007 14

2006 9

2005 9

展开 ︾

关键词

能源 51

可持续发展 12

核能 12

可再生能源 11

节能 10

碳中和 8

能源安全 6

2035 4

新能源 4

氢能 4

能源战略 4

能源结构 4

能源转型 4

能源革命 4

节能减排 4

节能环保 4

中长期 3

关键技术 3

太阳能 3

展开 ︾

检索范围:

排序: 展示方式:

Development of a hydrodynamic model and the corresponding virtual software for dual-loop circulating fluidized beds

Shanwei Hu, Xinhua Liu

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 579-590 doi: 10.1007/s11705-020-1953-6

摘要: Dual-loop circulating fluidized bed (CFB) reactors have been widely applied in industry because of their good heat and mass transfer characteristics and continuous handling ability. However, the design of such reactors is notoriously difficult owing to the poor understanding of the underlying mechanisms, meaning it has been heavily based on empiricism and stepwise experiments. Modeling the gas-solid CFB system requires a quantitative description of the multiscale heterogeneity in the sub-reactors and the strong coupling between them. This article proposed a general method for modeling multi-loop CFB systems by utilizing the energy minimization multiscale (EMMS) principle. A full-loop modeling scheme was implemented by using the EMMS model and/or its extension models to compute the hydrodynamic parameters of the sub-reactors, to achieve the mass conservation and pressure balance in each circulation loop. Based on the modularization strategy, corresponding interactive simulation software was further developed to facilitate the flexible creation and fast modeling of a customized multi-loop CFB reactor. This research can be expected to provide quantitative references for the design and scale-up of gas-solid CFB reactors and lay a solid foundation for the realization of virtual process engineering.

关键词: multi-loop circulating fluidized bed     mathematical modeling     energy minimization multiscale     virtual fluidization     mesoscale structure    

Optimal operation of energy at hydrothermal power plants by simultaneous minimization of pollution and

Homayoun EBRAHIMIAN,Bahman TAHERI,Nasser YOUSEFI

《能源前沿(英文)》 2015年 第9卷 第4期   页码 426-432 doi: 10.1007/s11708-015-0376-4

摘要: The aim of this paper is simultaneous minimization of hydrothermal units to reach the best solution by employing an improved artificial bee colony (ABC) algorithm in a multi-objective function consisting of economic dispatch (ED) considering the valve-point effect and pollution function in power systems in view of the hot water of the hydro system. In this type of optimization problem, all practical constraints of units were taken into account as much as possible in order to comply with the reality. These constraints include the maximum and minimum output power of units, the constraints caused by the balance between supply and demand, the impact of pollution, water balance, uneven production curve considering the valve-point effect and system losses. The proposed algorithm is applied on the studied system, and the obtained results indifferent operating conditions are analyzed. To investigate in various operating conditions, different load profiles in 12 h are taken into account. The obtained results are compared with those of the other methods including the genetic algorithm (GA), the Basu technique, and the improved genetic algorithm. Fast convergence is one of this improved algorithm features.

关键词: practical constraints of units     pollution function     inlet steam valve     up-ramp rate of units     improved ABC algorithm    

Multiscale process systems engineering—analysis and design of chemical and energy systems from molecular

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 137-140 doi: 10.1007/s11705-021-2135-x

Impact of energy structure adjustment on air quality: a case study in Beijing, China

Bin ZHAO, Jiayu XU, Jiming HAO

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 378-390 doi: 10.1007/s11783-011-0357-8

摘要: Energy consumption is a major cause of air pollution in Beijing, and the adjustment of the energy structure is of strategic importance to the reduction of carbon intensity and the improvement of air quality. In this paper, we explored the future trend of energy structure adjustment in Beijing till 2020, designed five energy scenarios focusing on the fuel substitution in power plants and heating sectors, established emission inventories, and utilized the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) to evaluate the impact of these measures on air quality. By implementing this systematic energy structure adjustment, the emissions of PM , PM , SO , NO , and non-methane volatile organic compounds (NMVOCs) will decrease distinctly by 34.0%, 53.2%, 78.3%, 47.0%, and 30.6% respectively in the most coal-intensive scenario of 2020 compared with 2005. Correspondingly, MM5-Models-3/CMAQ simulations indicate significant reduction in the concentrations of major pollutants, implying that energy structure adjustment can play an important role in improving Beijing’s air quality. By fuel substitution for power plants and heating boilers, PM , PM , SO , NO , and NMVOCs will be reduced further, but slightly by 1.7%, 4.5%, 11.4%, 13.5%, and 8.8% respectively in the least coal-intensive scenario. The air quality impacts of different scenarios in 2020 resemble each other, indicating that the potential of air quality improvement due to structure adjustment in power plants and heating sectors is limited. However, the CO emission is 10.0% lower in the least coal-intensive scenario than in the most coal-intensive one, contributing to Beijing’s ambition to build a low carbon city. Except for energy structure adjustment, it is necessary to take further measures to ensure the attainment of air quality standards.

关键词: Beijing     energy structure adjustment     air quality     Community Multiscale Air Quality Model (CMAQ)     scenario    

Minimization of total energy consumption in an m-machine flow shop with an exponential time-dependent

Lingxuan LIU, Zhongshun SHI, Leyuan SHI

《工程管理前沿(英文)》 2018年 第5卷 第4期   页码 487-498 doi: 10.15302/J-FEM-2018042

摘要:

This study investigates an energy-aware flow shop scheduling problem with a time-dependent learning effect. The relationship between the traditional and the proposed scheduling problem is shown and objective is to determine a job sequence in which the total energy consumption is minimized. To provide an efficient solution framework, composite lower bounds are proposed to be used in a solution approach with the name of Bounds-based Nested Partition (BBNP). A worst-case analysis on shortest process time heuristic is conducted for theoretical measurement. Computational experiments are performed on randomly generated test instances to evaluate the proposed algorithms. Results show that BBNP has better performance than conventional heuristics and provides considerable computational advantage.

关键词: flow shop     energy-aware scheduling     learning effect     nested partition     worst-case error bound    

Topology optimization based on reduction methods with applications to multiscale design and additive

Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 151-165 doi: 10.1007/s11465-019-0564-8

摘要: Advanced manufacturing processes such as additive manufacturing offer now the capability to control material placement at unprecedented length scales and thereby dramatically open up the design space. This includes the considerations of new component topologies as well as the architecture of material within a topology offering new paths to creating lighter and more efficient structures. Topology optimization is an ideal tool for navigating this multiscale design problem and leveraging the capabilities of advanced manufacturing technologies. However, the resulting design problem is computationally challenging as very fine discretizations are needed to capture all micro-structural details. In this paper, a method based on reduction techniques is proposed to perform efficiently topology optimization at multiple scales. This method solves the design problem without length scale separation, i.e., without iterating between the two scales. Ergo, connectivity between space-varying micro-structures is naturally ensured. Several design problems for various types of micro-structural periodicity are performed to illustrate the method, including applications to infill patterns in additive manufacturing.

关键词: multiscale topology optimization     micro-structure     additive manufacturing     reduction techniques     substructuring     static condensation     super-element    

Special Column on Multiscale Stochastic Finite Element Method

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 105-106 doi: 10.1007/s11709-015-0297-7

Mechanism on minimization of excess sludge in oxic-settling-anaerobic (OSA) process

WANG Jianfang, ZHAO Qingliang, JIN Wenbiao, LIN Jikan

《环境科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 36-43 doi: 10.1007/s11783-008-0001-4

摘要: The oxic-settling-anaerobic (OSA) process is a promising wastewater treatment technique for efficiently reducing sludge production and improving the stability of process operation. In this paper, the possible factors of sludge reduction such as sludge decay, uncoupled metabolism, and anaerobic oxidation with low sludge production were discussed in the OSA process. It has been confirmed that sludge decay is the decisive cause in the OSA process, accounting for 66.7% of sludge production reduction. Sludge decay includes hydrolysis and acidogenesis of dead microorganisms and particle organic carbon adsorbed in sludge floc and endogenous metabolism. By batch experiments, it has been proven that there is energetic uncoupling in the OSA system since microorganisms were exposed to alternative anaerobic and aerobic environment. It accounts for about 7.5% of sludge production reduction. Soluble chemical oxygen demand (SCOD) released from the anaerobic sludge tank in the OSA process was used as the substrate for cryptic growth. The substrate was used for anoxic denitrifying, anaerobic phosphorus release, sulfate reduction, and methane production. These anaerobic reactions in the sludge anaerobic tank have lower sludge production than in the aerobic oxidation when equivalent SCOD is consumed, which may lead to approximately 23% of sludge reduction in the OSA process. It has been concluded that multiple causes resulted in the minimization of excess sludge in the OSA system. The microbial community structure and diversity of sludge samples from the CAS (conventional activated sludge) and OSA systems were investigated by 16 SrDNA PCR-DG-DGGE (polymerase chain reaction-double gradient-denaturing gradient gel electrophoresis). DGGE profile and cluster analysis showed more abundant species in the OSA system contrasting to microbial communities in the CAS system.

Optimization of cold-end system of thermal power plants based on entropy generation minimization

《能源前沿(英文)》 2022年 第16卷 第6期   页码 956-972 doi: 10.1007/s11708-021-0785-5

摘要: Cold-end systems are heat sinks of thermal power cycles, which have an essential effect on the overall performance of thermal power plants. To enhance the efficiency of thermal power plants, multi-pressure condensers have been applied in some large-capacity thermal power plants. However, little attention has been paid to the optimization of the cold-end system with multi-pressure condensers which have multiple parameters to be identified. Therefore, the design optimization methods of cold-end systems with single- and multi-pressure condensers are developed based on the entropy generation rate, and the genetic algorithm (GA) is used to optimize multiple parameters. Multiple parameters, including heat transfer area of multi-pressure condensers, steam distribution in condensers, and cooling water mass flow rate, are optimized while considering detailed entropy generation rate of the cold-end systems. The results show that the entropy generation rate of the multi-pressure cold-end system is less than that of the single-pressure cold-end system when the total condenser area is constant. Moreover, the economic performance can be improved with the adoption of the multi-pressure cold-end system. When compared with the single-pressure cold-end system, the excess revenues gained by using dual- and quadruple-pressure cold-end systems are 575 and 580 k$/a, respectively.

关键词: cold-end system     entropy generation minimization     optimization     economic analysis     genetic algorithm (GA)    

Power system reconfiguration and loss minimization for a distribution systems using “Catfish PSO” algorithm

K Sathish KUMAR,S NAVEEN

《能源前沿(英文)》 2014年 第8卷 第4期   页码 434-442 doi: 10.1007/s11708-014-0313-y

摘要: One of the very important ways to save electrical energy in the distribution system is network reconfiguration for loss reduction. Distribution networks are built as interconnected mesh networks; however, they are arranged to be radial in operation. The distribution feeder reconfiguration is to find a radial operating structure that optimizes network performance while satisfying operating constraints. The change in network configuration is performed by opening sectionalizing (normally closed) and closing tie (normally opened) switches of the network. These switches are changed in such a way that the radial structure of networks is maintained, all of the loads are energized, power loss is reduced, power quality is enhanced, and system security is increased. Distribution feeder reconfiguration is a complex nonlinear combinatorial problem since the status of the switches is non-differentiable. This paper proposes a new evolutionary algorithm (EA) for solving the distribution feeder reconfiguration (DFR) problem for a 33-bus and a 16-bus sample network, which effectively ensures the loss minimization.

关键词: distribution system reconfiguration (DFR)     power loss reduction     catfish particle swarm optimization (catfish PSO)     radial structure    

A multiscale material model for heterogeneous liquid droplets in solid soft composites

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1292-1299 doi: 10.1007/s11709-021-0771-3

摘要: Liquid droplets in solid soft composites have been attracting increasing attention in biological applications. In contrary with conventional composites, which are made of solid elastic inclusions, available material models for composites including liquid droplets are for highly idealized configurations and do not include all material real parameters. They are also all deterministic and do not address the uncertainties arising from droplet radius, volume fraction, dispersion and agglomeration. This research revisits the available models for liquid droplets in solid soft composites and presents a multiscale computational material model to determine their elastic moduli, considering nearly all relevant uncertainties and heterogeneities at different length scales. The effects of surface tension at droplets interface, their volume fraction, size, size polydispersity and agglomeration on elastic modulus, are considered. Different micromechanical material models are incorporated into the presented computational framework. The results clearly indicate both softening and stiffening effects of liquid droplets and show that the model can precisely predict the effective properties of liquid droplets in solid soft composites.

关键词: liquid in solid     soft composite     computational modeling     multiscale model     heterogeneity    

Robust design approach to the minimization of functional performance variations of products and systems

J. ZHANG, H. DU, D. XUE, P. GU

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 379-392 doi: 10.1007/s11465-020-0607-1

摘要: Functional performance variations of products and systems are often used to measure the qualities of products and systems considering the changes in the design parameter values caused by uncertainties. A robust design approach has been developed in this research to minimize the functional performance variations considering the design parameter uncertainties by identifying the boundaries of the functional performance variations through optimization. In this work, a mathematical model is developed to describe the relationships among functional performance, design configurations and parameters, and design parameter uncertainties. A multi-level optimization model is established to identify: (1) The optimal design configuration, (2) the optimal values of design parameters, and (3) the boundaries of functional performance variations. Sensitivity analysis considering the impact of parameter uncertainties on functional performance variation boundaries has also been conducted. A case study on the design of a truss system has been conducted. Case study results show that the sensitivities of functional performance variation boundaries to the design parameter uncertainties can be reduced significantly using the new robust design approach.

关键词: product design     robust design     design optimization     uncertainties    

A multiscale-contour-based interpolation framework for generating a time-varying quasi-dense point cloud

Chu-hua HUANG,Dong-ming LU,Chang-yu DIAO

《信息与电子工程前沿(英文)》 2016年 第17卷 第5期   页码 422-434 doi: 10.1631/FITEE.1500316

摘要: To speed up the reconstruction of 3D dynamic scenes in an ordinary hardware platform, we propose an efficient framework to reconstruct 3D dynamic objects using a multiscale-contour-based interpolation from multi-view videos. Our framework takes full advantage of spatio-temporal-contour consistency. It exploits the property to interpolate single contours, two neighboring contours which belong to the same model, and two contours which belong to the same view at different times, corresponding to point-, contour-, and model-level interpolations, respectively. The framework formulates the interpolation of two models as point cloud transport rather than non-rigid surface deformation. Our framework speeds up the reconstruction of a dynamic scene while improving the accuracy of point-pairing which is used to perform the interpolation. We obtain a higher frame rate, spatio-temporal-coherence, and a quasi-dense point cloud sequence with color information. Experiments with real data were conducted to test the efficiency of the framework.

关键词: Multi-view video     Free-viewpoint video     Point-pair     Multiscale-contour-based interpolation     Spatio-temporal-contour     Consistency     Time-varying point cloud sequence    

Connected morphable components-based multiscale topology optimization

Jiadong DENG, Claus B. W. PEDERSEN, Wei CHEN

《机械工程前沿(英文)》 2019年 第14卷 第2期   页码 129-140 doi: 10.1007/s11465-019-0532-3

摘要: The advances of manufacturing techniques, such as additive manufacturing, have provided unprecedented opportunities for producing multiscale structures with intricate latticed/cellular material microstructures to meet the increasing demands for parts with customized functionalities. However, there are still difficulties for the state-of-the-art multiscale topology optimization (TO) methods to achieve manufacturable multiscale designs with cellular materials, partially due to the disconnectivity issue when tiling material microstructures. This paper attempts to address the disconnectivity issue by extending component-based TO methodology to multiscale structural design. An effective linkage scheme to guarantee smooth transitions between neighboring material microstructures (unit cells) is devised and investigated. Associated with the advantages of components-based TO, the number of design variables is greatly reduced in multiscale TO design. Homogenization is employed to calculate the effective material properties of the porous materials and to correlate the macro/structural scale with the micro/material scale. Sensitivities of the objective function with respect to the geometrical parameters of each component in each material microstructure have been derived using the adjoint method. Numerical examples demonstrate that multiscale structures with well-connected material microstructures or graded/layered material microstructures are realized.

关键词: multiscale topology optimization     morphable component     material microstructure     homogenization    

Multiscale computation on feedforward neural network and recurrent neural network

Bin LI, Xiaoying ZHUANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1285-1298 doi: 10.1007/s11709-020-0691-7

摘要: Homogenization methods can be used to predict the effective macroscopic properties of materials that are heterogenous at micro- or fine-scale. Among existing methods for homogenization, computational homogenization is widely used in multiscale analyses of structures and materials. Conventional computational homogenization suffers from long computing times, which substantially limits its application in analyzing engineering problems. The neural networks can be used to construct fully decoupled approaches in nonlinear multiscale methods by mapping macroscopic loading and microscopic response. Computational homogenization methods for nonlinear material and implementation of offline multiscale computation are studied to generate data set. This article intends to model the multiscale constitution using feedforward neural network (FNN) and recurrent neural network (RNN), and appropriate set of loading paths are selected to effectively predict the materials behavior along unknown paths. Applications to two-dimensional multiscale analysis are tested and discussed in detail.

关键词: multiscale method     constitutive model     feedforward neural network     recurrent neural network    

标题 作者 时间 类型 操作

Development of a hydrodynamic model and the corresponding virtual software for dual-loop circulating fluidized beds

Shanwei Hu, Xinhua Liu

期刊论文

Optimal operation of energy at hydrothermal power plants by simultaneous minimization of pollution and

Homayoun EBRAHIMIAN,Bahman TAHERI,Nasser YOUSEFI

期刊论文

Multiscale process systems engineering—analysis and design of chemical and energy systems from molecular

期刊论文

Impact of energy structure adjustment on air quality: a case study in Beijing, China

Bin ZHAO, Jiayu XU, Jiming HAO

期刊论文

Minimization of total energy consumption in an m-machine flow shop with an exponential time-dependent

Lingxuan LIU, Zhongshun SHI, Leyuan SHI

期刊论文

Topology optimization based on reduction methods with applications to multiscale design and additive

Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST

期刊论文

Special Column on Multiscale Stochastic Finite Element Method

期刊论文

Mechanism on minimization of excess sludge in oxic-settling-anaerobic (OSA) process

WANG Jianfang, ZHAO Qingliang, JIN Wenbiao, LIN Jikan

期刊论文

Optimization of cold-end system of thermal power plants based on entropy generation minimization

期刊论文

Power system reconfiguration and loss minimization for a distribution systems using “Catfish PSO” algorithm

K Sathish KUMAR,S NAVEEN

期刊论文

A multiscale material model for heterogeneous liquid droplets in solid soft composites

期刊论文

Robust design approach to the minimization of functional performance variations of products and systems

J. ZHANG, H. DU, D. XUE, P. GU

期刊论文

A multiscale-contour-based interpolation framework for generating a time-varying quasi-dense point cloud

Chu-hua HUANG,Dong-ming LU,Chang-yu DIAO

期刊论文

Connected morphable components-based multiscale topology optimization

Jiadong DENG, Claus B. W. PEDERSEN, Wei CHEN

期刊论文

Multiscale computation on feedforward neural network and recurrent neural network

Bin LI, Xiaoying ZHUANG

期刊论文